Documentation for C:\Idl\CRC\

Generated by IDLdoc

single page | use frames     summary     class     fields     routine details     file attributes

CHAPTER7\ENVIClassicExtensions\

ffn3kal__define.pro


Object class for implementation of a three-layer, feed-forward neural network for classification of multi-spectral images with AdaBoost.M1 or .M2 boosting

Implements Kalman filter training.

Refs: Shaw and Palmieri, Proc. Int. Joint Conf. on Neural Networks, San Diego (1990) I(3), 41-46

Freund and Shapire, J. Comp. and Syst. Sci. 55, 1997, 119-139 Schwenk and Bengio, Neural Computation 12(8) 2000, 1869-1887

ffn = Obj_New("FFN3KAL",Xs,Ls,L1,L2,D=D,epochs=epochs,M2=M2)

Xs: array of observation column vectors observations are in [0,1]

Ls: array of class label column vectors of form (0,0,1,0,0,...0)^T

L1,L2: numbers of hidden neurons

D: adaboost sample weight distribution

epochs: numberof training epochs

M2: if 0, then AdaBoost.M1 (default), else M2

Class description for FFN3KAL

Inheritance

Properties

Properties in FFN3KAL

epochs init
D init

Fields

Fields in FFN3

Fields in FFN3KAL

S2H ptr_new()
SD ptr_new()
V ptr_new()
SO ptr_new()
S1H ptr_new()
ITERATIONS 0L
COST_ARRAY ptr_new()
D ptr_new()

Author information

Author

Mort Canty (2009) Juelich Research Center m.canty@fz-juelich.de

Other file information

Uses:

PROGRESSBAR

Routines

result = FFN3KAL::Init(Gs, Ls, L1, L2 [, epochs=epochs], D=D)

Object class for implementation of a three-layer, feed-forward neural network classifier.

FFN3KAL::Cleanup
FFN3KAL::train, verbose=verbose, cancel=cancel
result = FFN3KAL::cost()
FFN3KAL__Define

Routine details

top FFN3KAL::Init

result = FFN3KAL::Init(Gs, Ls, L1, L2 [, epochs=epochs], D=D)

Object class for implementation of a three-layer, feed-forward neural network classifier. Implements Kalman filter training:

Shah, S. and Palmieri, F. (1990). Meka — A fast, local algorithm for training feed forward neural networks. Proceedings of the International Joint Conference on Neural Networks, San Diego, I(3), 41–46.

Parameters

Gs in required

array of observation column vectors

Ls in required

array of class label column vectors of form (0,0,1,0,0,...0)^T

L1 in required

number of hidden neurons

L2

Keywords

epochs in optional

training epochs per network in emsemble

D in required

training sample distribution

Examples

ffn = Obj_New("FFN3KAL",Gs,Ls,L1,L2)

Author information

Author:

Mort Canty (2009)

Other attributes

Uses:

COYOTE

top FFN3KAL::Cleanup

FFN3KAL::Cleanup

top FFN3KAL::train

FFN3KAL::train, verbose=verbose, cancel=cancel

Keywords

verbose
cancel

top FFN3KAL::cost

result = FFN3KAL::cost()

top FFN3KAL__Define

FFN3KAL__Define

File attributes

Modification date: Tue Nov 18 16:00:05 2014
Lines: 263
Docformat: rst rst