Documentation for C:\Idl\CRC\

Generated by IDLdoc

single page | use frames     summary     class     fields     routine details     file attributes

AUXIL\

ffncg__define.pro


Class description for FFNCG

Inheritance

Properties

Properties in FFNCG

epochs init

Fields

Fields in FFN

Fields in FFNCG

EPOCHS 0L
LTS ptr_new()
NTP 0L
VALID_COST_ARRAY ptr_new()
GTS ptr_new()
COST_ARRAY ptr_new()

Routines

result = FFNCG::Init(Gs, Ls, L, epochs=epochs)

Object class for implementation of a two-layer, feed-forward neural network classifier.

FFNCG::Cleanup
result = FFNCG::Gradient()
result = FFNCG::Rop(V)
result = FFNCG::Hessian()
result = FFNCG::Eigenvalues()
FFNCG::Train, key=key
FFNCG__Define

Routine details

top FFNCG::Init

result = FFNCG::Init(Gs, Ls, L, epochs=epochs)

Object class for implementation of a two-layer, feed-forward neural network classifier. Implements scaled conjugate gradient training:

Bishop, C. M. (1995). Neural Networks for Pattern Recognition. Oxford ;University Press.

Parameters

Gs in required

array of observation column vectors

Ls in required

array of class label column vectors of form (0,0,1,0,0,...0)^T

L in required

number of hidden neurons

Keywords

epochs

Examples

ffn = Obj_New("FFNCG",Gs,Ls,L)

Author information

Author:

Mort Canty (2009)

Other attributes

Uses:

COYOTE

top FFNCG::Cleanup

FFNCG::Cleanup

top FFNCG::Gradient

result = FFNCG::Gradient()

top FFNCG::Rop

result = FFNCG::Rop(V)

Parameters

V

top FFNCG::Hessian

result = FFNCG::Hessian()

top FFNCG::Eigenvalues

result = FFNCG::Eigenvalues()

top FFNCG::Train

FFNCG::Train, key=key

Keywords

key

top FFNCG__Define

FFNCG__Define

File attributes

Modification date: Mon Aug 18 13:32:17 2014
Lines: 211
Docformat: rst rst