
D

Python Scripts

This appendix provides installation instructions and documentation for the
Python scripts implementing the algorithms described in the text. The pro-
grams were tested with 32-bit Python 2.7 on MS Windows 7.0, and with
Python 2.7 on 32 and 64-bit Linux (Ubuntu 12.04).

D.1 Installation

The Python interpreter is pre-installed on Mac OS and Linux. The latest
Python 2.7x can be obtained for most operating systems from http://www.

python.org/

D.1.1 Required packages

The following is a list of the Python extension packages which are imported in
the various scripts, together with the URLs at which they can be obtained.∗

numpy: http://www.numpy.org/ (numerical Python)

scipy: http://www.scipy.org/ (scientific Python)

matplotlib: http://matplotlib.org/ (2D plotting library)

gdal: https://pypi.python.org/pypi/GDAL/ (geo-spatial data abstraction
library)

mlpy: http://mlpy.sourceforge.net/ (machine learning Python)

ctypes: http://python.net/crew/theller/ctypes/ (foreign function in-
terface)

shapely: https://pypi.python.org/pypi/Shapely (manipulation and anal-
ysis of planar geometric objects)

∗Windows users can obtain pre-compiled binaries for most of these at
http://www.lfd.uci.edu/~gohlke/pythonlibs/

471

472 Python Scripts

opencv: http://sourceforge.net/projects/opencvlibrary/ (open source
computer vision library)

spy: http://spectralpython.sourceforge.net/ (spectral Python)

multyvac: https://www.multyvac.com/ (high-performance cloud comput-
ing platform)

auxil (additional auxiliary routines, included with the software on the
author’s website)

All Python scripts which accompany this book, including the auxil package,
can be downloaded or cloned from the GitHub repository, see the links on

http://ms-image-analysis.appspot.com/static/homepage/software.html

or on

http://mcanty.homepage.t-online.de/software.html

The IR-MAD script iMad.py requires the dynamic library prov_means.dll

(Windows) or libprov_means.so (Linux, Mac OS). Compiled versions for 32-
bit and 64-bit Python (Windows) and Python on 32-bit and 64-bit Linux are
included with the software, together with the source code prov_means.c. The
libraries should be placed in the OS path, e.g., C:\Windows or /usr/lib.

To install the auxil package, open a console in the unpacked directory and
type the following:

python setup.py install

The scripts themselves are organized according to book chapter and can be
run from the command line. Convenient environments are idle (included in
most Python distributions) and ipython; see http://ipython.org/.

D.1.2 Eclipse

For those who wish to program the examples given in the exercises, or mod-
ify/improve the scripts provided here, Eclipse (http://www.eclipse.org/) to-
gether with the plug-in Pydev (http://pydev.org/) provide an excellent, plat-
form-independent Python programming development environment, very sim-
ilar to that for IDL. The environment includes syntax highlighting, code com-
pletion and debugging.

D.1.3 Docker containers

Docker containers which package command-line versions several of the Python
scripts are also available. They eliminate the need to install the Python
environment described above entirely. Only a 64-bit Linux OS and Docker
(https://www.docker.com/) is needed. On Windows or Mac OS one can use

Installation 473

the freely available VMWare Player to host a Linux virtual machine and run
Docker or, alternaively, install boot2docker from the Docker website.

From Ubuntu, for example, assuming Docker is installed, run

sudo docker run -d -p433:8888 -v my-dir:/crc/imagery

--name=crc mort/crcdocker

to download a Docker image and start a container in daemon mode serving
the iPython notebook kernel. Here my-dir is the location of your images on
your host machine. The -v option shares this directory with the directory
/crc/imagery in the running container. Any changes made in the container
will be immediately reflected in the host directory.

Point your browser to http://localhost:433 to see the iPython notebook
home page. Then open a new notebook and get help for the various scripts
with

• run dispms -h (displaying a ms-image in RGB)

• run pca -h (principal components analysis)

• run iMad -h (IR-Mad change detection)

• run radcal -h (relative radiometric normalization)

• run em -h (multi-scale, spatial/spectral Gaussian mixture clustering)

• run register -h (frequency domain image-image registration)

• run atwt -h (a trous transform panchromatic sharpening)

• run dwt -h (discrete wavelet transform panchromatic sharpening)

• run c_corr -h (empirical cosine correction for solar illumination in rough
terrain)

• etc ...

The bash script /crc/normalize in the container can be used for automatic
radiometric normalization of Landsat TM full scenes. The script takes four
required parameters and one optional one:

1. the spectral band to use for warping (registering) the target image to
the reference image

2. the spectral subset (bands) to include in the calculation

3. the filename of the reference image

4. the filename of the target image

5. (optional) the spatial subset to use for registering and IR-MAD

474 Python Scripts

For example:

!./ normalize 4 [1,2,3,4,5,7] reference.tif target.tif [500,500,2000,2000]

Similarly, the bash script c-correction.sh will run solar illumination cor-
rection with the c-correction method discussed in Chapter 5. The input pa-
rameters are:

1. the spatial subset to include in the calculation

2. the spectral subset (bands) to include in the calculation

3. the number of land cover classes to assume

4. the solar azimuth angle in degrees

5. the solar elevation angle in degrees

6. the filename of the multispectral image

7. the filename of the associated DEM (must have the same projection as
the ms image)

For example:

!./ c-correction.sh [0,0,1000,1000] [1,2,3,4,5,7] 3 135 57 ms-image dem-image

If you stop the container, you can start it again with

sudo docker start crc

Documentation 475

D.2 Documentation

D.2.1 Utilities

The auxil package contains the following modules:

auxil.auxil.py

A collection of auxiliary routines for processing multispectral imagery.

auxil.congrid.py

Arbitrary re-sampling of an array to new dimension sizes. Mimics the
CONGRID() function in IDL.

auxil.header.py

Defines an object class representing the text fields of an ENVI format
header.

auxil.png.py

A pure Python PNG coder/decoder, see http://pythonhosted.org/pypng/

png.html

auxil.polsar.py

Defines an object class to store fully polarimetric SAR data in multilook
covariance matrix form.

auxil.supervisedclass.py

Defines object classes for supervised image classification: Bayes maximum
likelihood, neural networks with backpropagation and scaled conjugate gradi-
ent training, and a support vector machine.

D.2.2 Scripts for Chapter 1

dispms.py

A command-line oriented routine to display any three spectral bands of a
multispectral image as an RGB composite. Usage:

python dispms [-f filename] [-p pos] [-d dims] [- e enhancement]

The RGB band positions and spatial dimensions are quoted lists, e.g.,

-p "[0,1,3]" -d "[0,0,400,400]"

The dimensions list dims is of form [X0,Y0,samples,lines]. The enhancement
modes are: 1 = linear byte stretch, 2 = linear stretch, 3 = linear 2% stretch,
4 = histogram equalization. Information not supplied on the command line
is queried interactively.

476 Python Scripts

D.2.3 Scripts for Chapter 4

D.2.3.1 Nonlinear principal components analysis (Section 4.4.2)

kpca.py

The user is first queried for a working directory, image filename and a
training sample size. If the latter is 0, then 100 representative training pixel
vectors are chosen by the k-means algorithm. Otherwise, a random sample of
the desired size is used. Next, the number of kernel principal components to
retain is entered and the destination output file selected. The user can then
choose between a linear or Gaussian kernel. The Gaussian kernel parameter
γ is calculated as γ = 1/(2σ2), where σ = 〈‖g(ν) − g(ν′)‖〉 is the average
Euclidean distance between the training observations. Finally, the output
destination is selected. After centering on the training data and diagonalizing
the kernel matrix, a plot of the eigenvalues is displayed and the projected
image is stored to disk.

D.2.4 Scripts for Chapter 5

D.2.4.1 Panchromatic sharpening of multispectral images using
the discrete or à trous wavelet transform (Sections 5.3.4
and 5.3.5)

dwt.py

atwt.py

The user is queried for the working directory, the (spatial/spectral subset
of the) multispectral image to be sharpened, the corresponding panchromatic
or high-resolution image and the output file. The panchromatic image should
overlap the multispectral image completely, so that the multispectral image
defines the extent of the final pan-sharpened product. Then the MS to pan
spatial resolution ratio (2 or 4), the MS band to be used for co-registration,
and, in the case of DWT fusion, a fine adjustment parameter are queried.
During the calculation the correlations of the wavelet coefficients for the low-
vs. high-resolution bands are printed.

D.2.4.2 Conversion of SAR imagery to ENVI standard files

polsaringest.py

Geocoded, multi-look polarimetric SAR imagery suitable for processing
with the filtering, classification and change detection algorithms described
in the text may be obtained directly from the provider or generated from
single-look complex (SLC) data. In the latter case, the open source software
packages PolSARpro (European Space agency),

http://earth.eo.esa.int/polsarpro/

Documentation 477

together with MapReady (Alaska Satellite Facility),

http://www.asf.alaska.edu/downloads/software_tools

are a good choice; see ?. PolSARpro is first used to create multi-look images
in covariance matrix format, which can then be exported to MapReady for
georeferencing with or without a DEM. Alternative commercial solutions are
the Gamma Software (Gamma Remote Sensing)

http://www.gamma-rs.ch/

and the SARscape add-on module for ENVI

http://www.exelisvis.com/ProductsServices/ENVI/ENVISARscape.aspx

The Python script polsaringest.py combines the outputs from the above
preprocessing systems to a single, multi-band file in 32-bit floating point for-
mat. For full quad polarimetric data, it generates 9 bands, which are ordered
as follows:

C11 = 〈|shh|2〉

C12re = 〈
√

2shhs
∗
hv〉(real part)

C12im = 〈
√

2shhs
∗
hv〉(imaginary part)

C13re = 〈shhs∗vv〉(real part)

C13im = 〈shhs∗vv〉(imaginary part)

C22 = 〈2|shv|2〉

C23re) = 〈
√

2shvs
∗
vv〉(real part)

C23im) = 〈
√

2shvs
∗
vv〉(imaginary part)

C33 = 〈|svv|2〉.

For dual or single polarimetry, the bands corresponding to the missing matrix
elements are not present. Thus, a dual polarimetric image will consist of
four bands, e.g., C11, C12re, C12im, and C22; a single polarimetric image
will consist of just one band, usually C11 or C33. The files generated by the
script can be read by all of the SAR processing routines described below, and
also by their ENVI/IDL counterparts described in Appendix C.

The user is prompted for the directory containing the georeferenced covari-
ance matrix files (consisting of one file for each of the real and imaginary
components), and then requested to choose (a spatial subset of) one of them.
The other files are then read in automatically with the same spatial subset.
Finally, an output filename and desired format are requested.

D.2.4.3 Multivariate estimation of equivalent number of looks for
polarimetric SAR in covariance matrix format

enlml.py

lookup.txt

478 Python Scripts

This method is not discussed in the text. It is a multivariate technique
based on the maximum likelihood estimator explained in ? and is reported
to be superior to the standard univariate method discussed in Section 5.4.2.
The polarimetric SAR image should be in the format generated by the script
polsaringest.py described in Section D.2.4.2 above. The user is asked to
select (a spatial subset of) the covariance matrix file, the desired window size
(default 7 × 7) and an output filename and format. The local ENL values
are estimated in a moving window and stored as a single-band, floating point
raster image. A histogram of the ENL values is plotted.

D.2.4.4 Minimum mean square error filtering of polarimetric SAR
imagery (Section 5.4.3.1)

mmse_filter.py

The polarimetric SAR image should be in the format generated by the script
polsaringest.py described in Section D.2.4.2 above. The user is queried for
the working directory, then for the input filename, the equivalent number of
looks and, finally, the output filename. The filtering operation occurs in two
steps: first the span image is processed to determine the filter weights, then
all components of the covariance matrix are filtered separately.

D.2.4.5 Gamma maximum a posteriori filtering of polarimetric
SAR imagery (Section 5.4.3.2)

gamma_filter.py

The polarimetric SAR image should have the same format as in Section
D.2.4.2 above. The user is queried for the working directory, then for the
input filename, the equivalent number of looks, the number of iterations and,
finally, the output filename. Only the diagonal elements of the covariance
matrix are filtered.

D.2.5 Scripts for Chapter 6

D.2.5.1 Supervised classification of multispectral images with max-
imum likelihood, neural network and support vector ma-
chine (Sections 6.3, 6.5, 6.6 and Appendix B)

classify.py

The user is first queried for a working directory and input image filename
and (optionally) a spectral subset. The image can be in any format recognized
by GDAL, but must be geo-referenced. Then the user can choose between
maximum likelihood, neural network (with backpropagation or scaled conju-
gate gradient training), or support vector machine algorithms. Next an ESRI
shape file, which defines the regions of interest in the input image, and an out-
put filename for the test results must be entered. Following this, the user must

Documentation 479

enter the filename for the classification (thematic map) image and (option-
ally) a filename for the class membership probability image. The latter is not
available for the maximum likelihood classifier. Finally, if the neural network
classifier was selected, the number of hidden neurons must be entered. (A
cross-entropy plot will be displayed after training has completed.) If the out-
put format chosen is ENVI, then an ENVI header corresponding to the ENVI
filetype “classification” will be written. The test result file can be processed
with the scripts ct.py and mcnemar.py discussed in Section D.2.6.3 below.

D.2.6 Scripts for Chapter 7

D.2.6.1 Probabilistic label relaxation postprocessing (Section 7.1.2)

plr.py

plr_reclass.py

The script takes as input a class probability vector image generated by
most of the supervised classification extensions described in this appendix, as
well as from the clustering routine em.py described in Section D.2.7.2 below,
and generates a modified class probability vector image (rule image). At the
prompt, choose a class membership probabilities image and the number of
iterations (default = 3). Then choose a destination filename and format. The
generated rule image can then be processed with the script plr_reclass.py to
produce an improved classification image with better spatial coherence. At
the prompt, choose a class membership probabilities image. Then choose an
output filename and format. If the format is ENVI, then an ENVI classifica-
tion file will be written.

D.2.6.2 Neural network supervised classification with cross-valida-
tion (Section 7.2.2)

ffncg.py

This script requires registration on the Multyvac website

https://www.multyvac.com/

The user is first queried for a working directory, an input image filename and
the training data shapefile. The image can be in any format recognized by
GDAL, but must be georeferenced. Next, enter the number of hidden neurons
and the filename for the classification image (thematic map). Training and
classification take place on the host computer using 9/10th of the training
data. The classification method used is a two-layer feed-forward network with
scaled conjugate gradient training. Upon completion, a cross-entropy plot
characterizing the training phase is displayed. When the plot is closed, the
training data are uploaded to the cloud service and a 10-fold cross-validation
is carried through. The results (misclassification rate and standard deviation)
are printed to the standard output. Note: Presently Multyvac does not offer

480 Python Scripts

parallelization, so that the script uses the ordinary Python map() function to
emulate parallel processing on the cloud service.

D.2.6.3 Contingency tables and McNemar test (Section 7.2)

ct.py

mcnemar.py

The scripts ct.py and mcnemar.py are used to evaluate and compare test
results generated by the supervised classifiers discussed in this appendix. They
request input files with extension tst and generate their outputs (contingency
tables, accuracies, test statistics, etc.) on the standard output.

D.2.6.4 Anomaly detection with the RX-algorithm (Section 7.5.4)

rx.py

The user is first queried for a working directory and input image filename.
The image can be in any format recognized by GDAL. Then the output file-
name and desired format must be entered. The anomaly image (the Maha-
lanobis distance of each pixel vector to the mean image background) is written
to disk.

D.2.7 Scripts for Chapter 8

D.2.7.1 Kernel K-means clustering of multispectral imagery (Sec-
tion 8.2. 2)

kkmeans.py

The user is first queried for a working directory and input image filename.
The image can be in any format recognized by GDAL. Then spatial and/or
spectral subsets can be entered along with a training data sample size to es-
timate the kernel and the desired number of clusters. Finally, the output
filename and format and the kernel type (Gaussian or linear) must be cho-
sen. If the output format is ENVI, then an ENVI classification file header is
generated.

D.2.7.2 Gaussian mixture clustering using the expectation maxi-
mization algorithm (Section 8.3)

em.py

Clustering occurs optionally at different scales, and both simulated anneal-
ing and spatial memberships can be included if desired. The user is queried
for a working directory and input image filename. The image may be in any
format recognized by GDAL. Then, at the corresponding prompts, spectral
and/or spatial subsets may be chosen, followed by the number of clusters, the

Documentation 481

number of compressions (initial and final pyramid depths), initial annealing
temperature (zero for no annealing), and spatial membership parameter beta

(zero for no spatial memberships). Finally, the user is prompted for the de-
sired output format and filename for the classification image and (optionally)
for a probability image. If ENVI format is chosen, an ENVI classification file
will be written.

D.2.8 Scripts for Chapter 9

D.2.8.1 Iteratively re-weighted multivariate alteration detection
(Section 9.4)

iMad.py

When running the iMad.py script, you are first prompted for an input
directory and then for the (spectral and spatial subsets of) the first and second
input images. The input subsets must be co-registered and have the same
spatial/spectral dimensions. They can be in any format recognized by GDAL.
The following prompts are for a regularization or penalization factor (default
0) and for an output filename, which again can be in any GDAL multispectral
format. The script prints the convergence criterion Delta and the canonical
correlations for each iteration. Computation terminates when Delta < 0.001
or after 100 iterations. The output consists of the stacked MAD variates in
order of decreasing variance followed by the chi-square image.

D.2.8.2 Polarimetric SAR change detection

wishartchange.py

The two polarimetric SAR images should have the same format as in Section
D.2.4.2 above and be geo-referenced. The user is asked to choose a working
directory, and then to enter the input filename and the equivalent number of
looks for each image successively. The images must have the same polarimetry,
which can be any of the following:

• full polarimetry

• dual polarimetry

• single polarization.

Next a significance threshold for the change map image is queried, and fi-
nally, an output filename and desired format. The images are co-registered
automatically and the second image is clipped to have the same spatial ex-
tent as the first. Note: this will only work reliably when the original spatial
dimensions of the two images are similar. After completion, a 2-band image
consisting of the test statistic −2ρ lnQ, and the associated change probability
Pr(−2ρ lnQ) ≤ z) is written to the chosen output filename. The latter can be

482 Python Scripts

thresholded to obtain a change map at any desired significance level (e.g., at
0.99 for changes at the 1% significance level.) The change map image, consist-
ing of the changes at the chosen significance level in red superimposed onto
the first band (C11) of the first image, is written to the the chosen output
filename with _cmap appended.

D.2.8.3 IR-MAD relative radiometric normalization (Section 9.8)

radcal.py

This script takes advantage of the linear and affine invariance of the MAD
transformation to perform a relative radiometric normalization of the images
involved in the transformation.

The routine first prompts for an input directory, (spectral/spatial subsets
of) the reference and target images, as well as for the spatial subset of the iMad
image generated according to Section D.2.8.1 above (the chi-square band is
found automatically). The spatial subsets of all three input images must have
the same size and the spectral subsets of the reference and target images must
match. After the prompt for an output filename, which can have any of the
formats recognized by GDAL, the filename of a larger (e.g., full) scene can be
(optionally) entered. This file must have the same spectral dimensions as the
reference and target files and will be normalized with the regression coefficients
determined by them. The result will be stored in the same format and with the
same root name as the specified output filename, but with norm appended.
Finally the user is prompted for a minimum no-change probability threshold
(default 0.95). The script prints, band-wise, the regression coefficients, and
the results of statistical tests for equal means and variances of the reference
and normalized target image bands. The tests are evaluated on the basis of
the hold-out test pixels (train:test = 2:1). The script also plots the orthogonal
regression lines for up to 10 spectral bands.

