Image Analysis, Classification and Change Detection in Remote Sensing, Fourth Revised Edition: Errata

Page 35, Equation (2.9)

$$
\langle Z\rangle=\int_{-\infty}^{\infty} z \cdot z(z) d z
$$

Page 61, after Definition 2.6

... that is at least as extreme as the one observed, given the null hypothesis, for example,

$$
P=\operatorname{Pr}\left(Q<q \mid H_{0}\right)
$$

Page 187, first line
the Central Limit Theorem 2.4 imply ...

Page 265, last line
This greatly simplifies ...

Page 298, First line in Section 7.2.2
Not surprisingly ...

Page 402, Equation (9.32)

$$
\frac{L_{0}(\hat{x})}{L_{1}\left(\hat{x}_{1}, \hat{x}_{2}\right)}=\frac{\left(g_{1} / m\right)^{m}\left(g_{2} / m\right)^{m}}{\left(\frac{g_{1}+g_{2}}{2 m}\right)^{2 m}}=2^{2 m} \frac{g_{1}^{m} g_{2}^{m}}{\left(g_{1}+g_{2}\right)^{2 m}} \leq t .
$$

Page 408, Equation (9.44)

$$
Z_{j}=-2 \log R_{j}=-2 m(\ldots)
$$

