
Software

This document provides installation instructions for the software accompany-
ing the textbook
Image Analysis, Classification and Change Detection In Remote Sensing,

Fourth Revised Edition, CRC Press 2019
and documents all scripts used to illustrate the various algorithms and meth-
ods discussed in the text.

Installation

By far the easiest way to use the software is to run it in a Docker container on
your host operating system. For this all you need is the Docker Community
Edition (Docker CE), which is freely available. It can be easily installed on
Linux, MacOS and Windows 10 Pro or Enterprise. Detailed instructions may
be found at

https://docs.docker.com/engine/installation/

If your system doesn’t meet these requirements, e.g., you have an older Win-
dows version, then it is recommended to install the legacy Docker Toolbox

https://docs.docker.com/toolbox/overview/

Once you have Docker installed, pull and run the container with

docker run -d -p 443:8888 -p 6006:6006

-v <myimagefolder>:/home/myimagery/ --name=crc4 mort/crc4docker

This maps the host directory <myimagefolder> to the container directory
/home/ myimagery/ and runs the container in detached mode. The myimagery
directory can be used to run the scripts on your, the user’s, personal image
data. Most of the image files discussed in the text examples are included
within the Docker container in the directory /home/imagery.

Point your browser to http://localhost:443 to see the Jupyter notebook
home page. Open a notebook to begin work. Stop with

docker stop crc4

1

2

Re-start with

docker start crc4

Port 6006 is also forwarded from the localhost in case the tensorboard utility
is invoked.

Command line utilities

This section mentions some useful command line utilities available in the
Docker container. They can be run from the Jupyter notebook interface by
opening a local terminal, or in the case of the gdal utilities which don’t request
additional input from stdin, directly from an input cell by prepending the
command with a “!”.

gdal

A set of binaries is automatically installed together with GDAL, the geospatial
data abstraction library. See

https://www.gdal.org/gdal_utilities.html

for a full list and documentation. From an input cell enter:

!<utility name > [OPTIONS] <inputs >

Example: Read and display image statistics on a LANDSAT 7 ETM+ image.
Force computation if no statistics are stored in the image.

!gdalinfo -stats imagery /LE7_20010626

earthengine

The Earth Engine Command Line Interface allows various manipulations of,
and provides information about, Earth Engine assets and tasks.
Example: Add authentication information to your Docker container. Open a
local terminal from the notebook home page and enter:

earthengine authenticate

and follow the instructions. Thereafter, as long as the container is not re-
moved, no further authentication is needed.

ipcluster

Start/stop a parallel processing cluster, see

3

https://github.com/ipython/ipyparallel

Example: Start four IPython engines in the Docker container. Open a local
terminal from the notebook home page and enter:

ipcluster start -n 4

Source code

For those who wish to program the examples given in the exercises, or modi-
fy/improve the more extensive scripts accompanying the text, the source code
is available at

https://mortcanty.github.io/CRC4Docker/

and includes the Dockerfile to build a local version of the Docker image.
As an alternative to the interactive Jupyter notebook environment for pro-

gram development, Eclipse

http://www.eclipse.org/

together with the plug-in Pydev (http://pydev .org/) provide an excel-
lent, platform-independent Python programming environment including syn-
tax highlighting, code completion and debugging. The source code repository
includes Eclipse .project and .pydevproject files.

Python scripts

This section describes the programs contained in the /home/scripts direc-
tory, as well as some of the utilities in the /home/auxil directory, in alpha-
betical order. The scripts are all command line oriented and are documented
here in the context of the Jupyter notebook interface. Thus to run a script
called somescript.py in a Jupyter notebook input cell, assuming you are in
the /home directory, use the run magic as follows:

run scripts /somescript [OPTIONS] <input parameters >

Some of the scripts can take advantage of the IPython parallel programming
capabilities to speed up calculations. For instance, if you have 4 CPU cores,
you can make use of this feature by opening a terminal window from the
Jupyter notebook home page and entering the command

4

ipcluster start -n 4

2018 -08 -02 ... Starting ipcluster with [daemon=False]

2018 -08 -02 ... Creating pid file : ... /pid/ipcluster .pid

2018 -08 -02 ... Starting Controller with

LocalControllerLauncher

2018 -08 -02 ... Starting 4 Engines with

LocalEngineSetLauncher

2018 -08 -02 ... Engines appear to have started successfully

adaboost.py

Supervised classification of multispectral images with ADABOOST.M1.

run scripts/adaboost [OPTIONS] filename trainShapefile

Options:

-h this help

-p <list> band positions e.g. -p [1,2,3,4]

-L <int> number of hidden neurons (default 10)

-n <int> number of nnet instances (default 50)

-e <int> epochs for ekf training (default 3)

If the input file is named

path / filenbasename .ext

then the output classification file is named

path / filebasename_class .ext

Example: Classify the first 4 principal components of an ASTER PCA image.

run scripts /adaboost -p [1,2,3,4] \

imagery /AST_20070501_pca .tif imagery /train.shp

atwt.py

Perform panchromatic sharpening with the à trous wavelet transform.

run scripts/atwt [OPTIONS] msfilename panfilename

Options:

-h this help

-p <list> RGB band positions to be sharpened (default all)

e.g. -p [1,2,3]

-d <list> spatial subset [x,y,width,height] of ms image

e.g. -d [0,0,200,200]

-r <int> resolution ratio ms:pan (default 4)

-b <int> ms band for co-registration

5

Example: Pan-sharpen the 6 NIR bands (30m) in an ASTER image with band
3 of the 3 VNIR bands (15m).

run scripts /atwt -p [1,2,3,4,5,6] -r 2 -b 3 \

imagery /msimage.tif imagery/panimage .tif

c corr.py

Run the C-correction algorithm for solar illumination in rough terrain. Cor-
rection is applied only if the correlation between band intensities and the
cos(γ) image is > 0.2. If a classification file is provided, the correction will be
calculated on a class-specific basis.

run scripts/c_corr [OPTIONS] solarAzimuth solarElevation \

msfilename demfilename

Options:

-h this help

-p <list> RGB band positions to be sharpened

(default all) e.g. -p [1,2,3]

-d <list> spatial subset [x,y,width,height] of ms image

e.g. -d [0,0,200,200]

-c <string> classfilename (default None)

The bash shell script scripts/c-correction.sh can be used to perform the
following sequence:

1. Run a PCA on the multispectral input image.

2. Perform EM clustering on the first three PCs.

3. Run c corr.py using the classified image.

!scripts/c-correction.sh spatialDims bandPos numEMClasses \

solarAzimuth solarElevation msImage demImage

classify.py

Supervised classification of multispectral images.

run scripts/classify [OPTIONS] filename shapefile

Options:

-h this help

-p <list> RGB band positions to be included

(default all) e.g. -p [1,2,3]

-a <int> algorithm 1=MaxLike

2=Gausskernel

3=NNet(backprop)

6

4=NNet(congrad)

5=NNet(Kalman)

6=Dnn(tensorflow)

7=SVM

-e <int> number of epochs (default 100)

-t <float> fraction for training (default 0.67)

-v use validation (reserve half of training

data for validation)

-P generate class probability image (not

available for MaxLike)

-n suppress graphical output

-L <list> list of hidden neurons in each

hidden layer (default [10])

If the input file is named

path / filenbasename .ext

then the output classification file is named

path / filebasename_class .ext

the class probabilities output file is named

path / filebasename_classprobs.ext

and the test results file is named

path /filebasename_ <classifier >. tst

Example: Classify the first four principal components of an ASTER image
using a deep learning network with three hidden layers, 4000 epochs, and
generate a class probabilities image as well as a thematic map and test results.

run scripts/classify -p [1,2,3,4] -P -a 6 \

-L [10 ,10 ,10] -e 4000 \

imagery /AST_20070501_pca .tif train.shp

crossvalidate.py

Parallelized cross-validation.

run scripts/crossvalidate [OPTIONS] infile trainshapefile

Options:

-h this help

-a <int> algorithm 1=MaxLike(default)

2=Gausskernel

3=NNet(backprop)

4=NNet(congrad)

5=NNet(Kalman)

6=Dnn(tensorflow)

7

7=SVM

-p <list> band positions (default all)

e.g. -p [1,2,3]

-L <list> hidden neurons (default [10])

e.g. [10,10]

-e <int> epochs (default 100)

Prints the misclassification rate and its standard deviation.
Example: Determine the accuracy for SVM classification of the first 4 principal
components of an ASTER image.

run scripts/ ccrossvalidate -p [1,2,3,4] -a 7 \

imagery /AST_20070501_pca .tif train.shp

ct.py

Determine classification accuracy and contingency table from the test results
file.

run scripts/ct testfile

Example: Show results for a neural network classification of an ASTER image.

run scripts /ct AST_20070501_pca_NNet (Congrad). tst

dispms.py

Displays an RGB composite image, or two images side-by-side.

run scripts/dispms [OPTIONS]

Options:

-h this help

-f <string> image filename or left-hand image filename

(if not specified, it will be queried)

-F <string> right-hand image filename, if present

-e <int> left enhancement (1=linear255 2=linear

3=linear2% saturation 4=histogram equalization

5=logarithmic (default)

-E <int> right ditto

-p <list> left RGB band positions e.g. -p [1,2,3]

-P <list> right ditto

-d <list> left spatial subset [x,y,width,height]

e.g. -d [0,0,200,200]

-D <list> right ditto

-c right display as classification image

-C left ditto

-o <float> overlay left image onto right with

8

desired opacity 0 to 1

-r <list> class labels (list of strings)

-s <string> save to a file in EPS format

Example: Display band 4 of a LANDSAT 7 ETM+ image in a histogram
equalization stretch.

run scripts /dispms -f imagery/ L7_20010525 -e 4 -p [4,4,4]

Example: Display RGB composites of bands 1, 2 and 3 of two ASTER images
in a linear 2% histogram stretch.

run scripts /dispms -f imagery/ AST_20010409 -e 3 \

-p [1,2,3] -F imagery/ AST_20010730 -E 3 -P [1,2,3]

dwt.py

Perform panchromatic sharpening with the discrete wavelet transform.

run scripts/dwt [OPTIONS] msfilename panfilename

Options:

-h this help

-p <list> RGB band positions to be sharpened

(default all) e.g. -p [1,2,3]

-d <list> spatial subset [x,y,width,height] of ms image

e.g. -d [0,0,200,200]

-r <int> resolution ratio ms:pan (default 4)

-b <int> ms band for co-registration

Example: Pan-sharpen a 200 × 200 pixel spatial subset of an IKONOS ms
image (4m, 4 bands) with the corresponding panchromatic image (1m) using
band 4 of the ms image.

run scripts /dwt -r 4 -b 4 -d [50 ,100 ,200 ,200] \

imagery/IKON_ms imagery /IKON_pan

eeMad.py

A module containing utilities for running the iMad algorithm on the Google
Earth Engine.

from auxil.eeMad import imad, radcal, radcalbatch

The function imad implements the iteratively re-weighted MAD transforma-
tion and is called in an iterator as follows:

result = ee.Dictionary (inputlist .iterate(imad ,first))

where inputlist is an ee.List of arbitrary integers with length equal to the
maximum number of iterations. The variable first is an ee.Dictionary,
e.g.,

9

first = ee.Dictionary ({’done ’:ee.Number (0),

’image’:image1.addBands (image2). clip (poly),

’allrhos ’: [ee.List .sequence (1, len(bands))],

’chi2 ’:ee.Image.constant (0),

’MAD’:ee.Image.constant (0)})

After iteration, the MAD variates, the chi square image and the canonical
correlations can be extracted from the returned dictionary, e.g.,

MADs = ee.Image(result.get(’MAD ’))

Similarly, radcal and radcalbatch are iterator functions for performing ra-
diometric normalization on two resp. several multispectral images.

eeSar seq.py

A module for running a Jupyter notebook widget interface to the sequential
SAR omnibus change detection algorithm on the Google Earth Engine. In a
Jupyter notebook input cell, enter

from auxil.eeSar_seq import run

run()

to start the interface. Use the polygon map tool and the text widgets to select
a region of interest, desired time period, orbit properties, etc. Leaving the
relative orbit number at 0 will ignore the orbit number in the search. Press
Run to launch the calculation. An info window will show the results of the
search. Here it may be necessary to specify a unique relative orbit number
to ensure equal incident angles across the sequence. In that case, re-run with
the desired number. Press Preview to force calculation at the current scale
(defined by the current Zoom level). Note that larger scales will falsify the
preview image because re-sampling will change the ENL value. (The exported
change maps will have the correct ENL.) Choose a destination file name for
your GEE asset repository and press Export to save the results to GEE assets.

eeWishart.py

A module containing utilities for running the sequential SAR omnibus change
detection algorithm on the Google Earth Engine.

from auxil.eeWishart import omnibus

The function omnibus is called, e.g., as follows:

result = ee.Dictionary (

omnibus (imList , significance =0.0001 , median=False))

where imList is an ee.List of dual pol, diagonal-only Sentinel-1 SAR ee.Image
objects. The returned dictionary contains the change maps with keys cmap,
smap, fmap and bmap. For example,

10

cmap = ee.Image(result.get(’cmap ’)). byte ()

ekmeans.py

Perform extended K-means clustering on a single image band.

run scripts/ekmeans [OPTIONS] filename

Options:

-h this help

-b <int> band position (default 1)

-d <list> spatial subset [x,y,width,height]

e.g. -d [0,0,200,200]

-k <int> number of metaclusters (default 8)

Example: Cluster the first principal component of an ASTER image.

run scripts /ekmeans -b 1 imagery /AST_20070501_pca .tif

em.py

Perform Gaussian mixture clustering on multispectral imagery with the ex-
pectation maximization algorithm.

run scripts/em [OPTIONS] filename

Options:

-h this help

-p <list> band positions e.g. -p [1,2,3,4,5,7]

-d <list> spatial subset [x,y,width,height]

e.g. -d [0,0,200,200]

-K <int> number of clusters (default 6)

-M <int> maximum scale (default 2)

-m <int> minimum scale (default 0)

-t <float> initial annealing temperature (default 0.5)

-s <float> spatial mixing factor (default 0.5)

-P generate class probabilities image

If the input file is named

path / filenbasename .ext then

the output classification file is named

path / filebasename_em .ext

and the class probabilities output file is named

path / filebasename_emprobs .ext

Example: Cluster the first four principal components of an ASTER image
with 8 clusters, generating a class probabilities file.

11

run scripts /em -p [1,2,3,4] -K 8 -P \

imagery /AST_20070501_pca .tif

enlml.py

Estimation of ENL for polSAR covariance format images using a maximum
likelihood method which uses the full covariance matrix (quad, dual or single).
(?)

run scripts/enlml [OPTIONS] filename

Options:

-h this help

-n suppress graphics output

-d <list> spatial subset list e.g. -d [0,0,400,400]

Example: Estimate ENL values in a spatial subset of a quad pol RADARSAT-
2 image.

run scripts /enlml -d {200 ,200 ,200 ,200] \

myimagery /RS2_20090525 .tif

An ENL image will be written to the same directory as the input file with
enl appended. A histogram of the ENL values for the chosen spatial subset
is displayed, from which the mode can be determined.

gamma filter.py

Run a gamma MAP filter over the diagonal elements of a polarimetric matrix
image.

run scripts/gamma_filter [OPTIONS] filename enl

Options:

-h this help

-d spatial subset list e.g. -d [0,0,300,300]

If parallel processing is enabled by running the command

ipcluster start -n <number of engines >

in a terminal window (available in the Jupyter notebook home menu), then
the script will make use of the available engines to perform the calculations.
The output file has the same name as the input file with gamma appended.

Example: Filter the three diagonal elements of a RADAESAT-2 quad pol
image with ENL of 12.5.

run scripts /gamma_filter myimagery /RS2_20090829 .tif 12.5

12

hcl.py

Perform agglomerative hierarchical clustering of a multispectral image.

run scripts/hcl [OPTIONS] filename

Options:

-h this help

-p <list> band positions e.g. -p [1,2,3,4,5,7]

-d <list> spatial subset [x,y,width,height]

e.g. -d [0,0,200,200]

-k <int> number of clusters (default 8)

-s <int> number of samples (default 1000)

The clustering is performed on the samples only. The resulting clusters are
then used to train a maximum likelihood classifier with which all of the pixels
are then clustered.

Example: Cluster the first 4 principle components of an ASTER image with
8 clusters and a sample of 2000 pixel vectors.

run scripts /hcl -p [1,2,3,4] -k 8 -s 2000 \

imagery /AST_20070501_pca .tif

iMad.py

Run the iteratively re-weighted MAD transformation on two co-registered
multispectral images.

run scripts/iMad [OPTIONS] filename1 filename2

Options:

-h this help

-i <int> maximum iterations (default 50)

-d <list> spatial subset list e.g. -d [0,0,500,500]

-p <list> band positions list e.g. -p [1,2,3]

-l <float> regularization (default 0)

-n suppress graphics

-c append canonical variates to output

The images must have the same spatial and spectral dimensions. The output
MAD variate file has the same format as filename1 and is named

path /MAD(filebasename1 - filebasename2). ext1

where

filename1 = path / filebasename1 .ext1

filename2 = path / filebasename2 .ext2

For ENVI files, ext1 or ext2 is the empty string. The output file band
structure is as follows:

13

MAD variate 1

...

MAD variate N

Chi square

Image1 canonical variate 1 (optional)

...

Image1 canonical variate N

Image2 canonical variate 1

...

Image1 canonical variate N

Example: Run iterated MAD on two LANDSAT 5 TM images.

run scripts /iMad -i 30 imagery/ LT5_19980329_sub .tif \

imagery /LT5_19980516_sub .tif

iMadmap.py

Make a change map from iMAD variates at a given significance level.

run scripts/iMadmap [OPTIONS] madfile significance

Options:

-h this help

-m run a 3x3 median filter over the P-values

-d <list> spatial subset list e.g. -d [0,0,500,500]

The madfile should not include the canonical variates.

Example: Create a change map from LANDSAT 5 TM MAD variates at
significance level 0.0001 and with a median filter on the P -values.

run scripts /iMadmap -m \

imagery /MAD(LT5_19980329_sub - LT5_19980516_sub). tif 0.0001

kkmeans.py

Perform kernel K-means clustering on multispectral imagery.

run scripts/kkmeans [OPTIONS] filename

Options:

-h this help

-p <list> band positions e.g. -p [1,2,3,4,5,7]

-d <list> spatial subset [x,y,width,height]

e.g. -d [0,0,200,200]

-k <int> number of clusters (default 6)

-m <int> number of samples (default 1000)

-n <int> nscale for Gauss kernel (default 1)

14

Example: Cluster the first 4 principal components of an ASTER image with
8 clusters.

run scripts /kkmeans -p [1,2,3,4] -k 8 \

imagery /AST_20070501_pca .tif

kmeans.py

Perform K-means clustering on multispectral imagery.

run scripts/kmeans [OPTIONS] filename

Options:

-h this help

-p <list> band positions e.g. -p [1,2,3,4,5,7]

-d <list> spatial subset [x,y,width,height]

e.g. -d [0,0,200,200]

-k <int> number of clusters (default 6)

Example: Cluster the first 4 principal components of an ASTER image with
8 clusters.

run scripts /kmeans -p [1,2,3,4] -k 8 \

imagery /AST_20070501_pca .tif

kpca.py

Perform kernel PCA on multispectral imagery.

run scripts/kpca [OPTIONS] filename

Options:

-h this help

-p <list> band positions e.g. -p [1,2,3,4,5,7]

-d <list> spatial subset [x,y,width,height]

e.g. -d [0,0,200,200]

-k <int> kernel: 0=linear, 1=Gaussian (default)

-s <int> sample size for estimation of kernel

matrix, zero for kmeans to determine

100 cluster centers (default)

-e <int> number of eigenvectors to keep (default 10)

-n disable graphics

The output file is named as the input filename with kpca appended.

Example: Perform Kernel PCA with Gaussian kernel on the 6 non-thermal
bands of a LANDSAT 5 TM image using 1000 samples and retaining 8 eigen-
vectors.

run scripts /kpca -p [1,2,3,4,5,7] -s 1000 -e 8 \

imagery/ LT5_19980329 .tif

15

krx.py

Kernel RX anomaly detection for multi- and hyperspectral images.

run scripts/krx [OPTIONS] filename

Options:

-h this help

-s <int> sample size for kernel matrix (default 1000)

-n <int> nscale parameter for Gauss kernel (default 10)

Example: Kernel anomaly detection for an ASTER PCA image.

run scripts /krx imagey/AST_20070501_pca .tif

mcnemar.py

Compare two classifiers with the McNemar statistic.

run scripts/mcnemar testfile1 testfile2

Example: Compare neural network and svm classification accuracies for an
ASTER image.

run scripts /ct AST_20070501_pca_NNet (Congrad). tst \

AST_20070501_pca_SVM .tst

meanshift.py

Segment a multispectral image with the mean shift algorithm.

run scripts/meanshift [OPTIONS] filename

Options:

-h this help

-p <list> band positions e.g. -p [1,2,3,4,5,7]

-d <list> spatial subset [x,y,width,height]

e.g. -d [0,0,200,200]

-r <int> spectral bandwidth (default 15)

-s <int> spatial bandwidth (default 15)

-m <int> minimum segment size (default 30)

Example: Segment a spatial subset of the first 4 principal components of an
ASTER image with spatial bandwidth 15, spectral bandwidth 30,and mini-
mum segment size 10.

run scripts /meanshift -p [1,2,3,4] -d [500 ,450 ,200 ,200] \

-s 15 -r 30 -m 10 imagery/ AST_20070501_pca .tif

16

mmse filter.py

Run an MMSE filter over all elements of a polarimetric matrix image.

run scripts/mmse_filter [OPTIONS] filename enl

Options:

-h this help

-d spatial subset list e.g. -d [0,0,300,300]

The output file has the same name as the input file with mmse appended.

Example: Filter the elements of a RADARSAT-2 quad pol image with ENL
of 12.5.

run scripts /mmse_filter myimagery /RS2_20090829 .tif 12.5

mnf.py

Calculate minimum noise fraction image.

run scripts/mnf [OPTIONS] filename

Options:

-h this help

-p <list> band positions e.g. -p [1,2,3,4,5,7]

-d <list> spatial subset [x,y,width,height]

e.g. -d [0,0,200,200]

-n disable graphics

The output file is named as the input filename with mnf appended.
Example: Perform MNF transformation on the 6 non-thermal bands of a
LANDSAT 5 TM image.

run scripts /mnf -p [1,2,3,4,5,7] imagery/ LT5_19980329 .tif

pca.py

Perform principal components analysis on an image.

run scripts/pca [OPTIONS] filename

Options:

-h this help

-p <list> band positions e.g. -p [1,2,3,4,5,7]

-d <list> spatial subset [x,y,width,height]

e.g. -d [0,0,200,200]

-r <int> number of components for reconstruction (default 0)

-n disable graphics

The output files are named as the input filename with pca or recon ap-
pended.

17

Example: Perform PCA on the 6 non-thermal bands of a LANDSAT 5 TM
image and reconstruct from the first three principal components.

run scripts /pca -p [1,2,3,4,5,7] -r 3 \

imagery/ LT5_19980329 .tif

plr.py

Probabilistic label relaxation postprocessing of supervised classification im-
ages.

run scripts/plr [OPTIONS] classProbFileName

Options:

-h this help

-i <int> number of iterations (default 3)

Example: Perform PLR on the class probability file generated from a super-
vised classification of principal components of a LANDSAT 5 TM image.

run scripts /plr imagery / LT5_19980329_pca_classprobs.tif

The result (classified image) is written to

imagery /LT5_19980329_pca_classprobs_plr.tif

radcal.py

Automatic radiometric normalization of two multispectral images.

run scripts/radcal [OPTIONS] iMadFile [fullSceneFile]

Options:

-h this help

-t <float> P-value threshold (default 0.95)

-d <list> spatial subset e.g. -d [0,0,500,500]

-p <list> band positions e.g. -p [1,2,3]

Spatial subset MUST match that of iMadFile, spectral dimension of full-
SceneFile, if present, MUST match those of the target and reference images.
The iMadFile is assumed to be of the form

path /MAD(filename1 -filename2). ext

and the output file is named

path /filename2_norm .ext.

That is, it is assumed that filename1 is the reference and filename2 is
the target and the output retains the format of the imMadFile. A similar
convention is used to name the normalized full scene, if present:

fullSceneFile_norm .ext

Note that, for ENVI format, ext is the empty string.

18

readshp.py

Read shapefiles and return training/test data and class labels.

from auxil import readshp

Xs, Ls, numclasses, classlabels = readshp.readshp(

<train shapefile>, <imagefilename>,

<list of band positions>)

This is a helper module for reading shapefiles generated from ENVI ROIs,
together with the image file used to define the ROIs, and returning labeled
train/test data, the number of classes and their labels.

registerms.py

Perform image-image registration of two optical/infrared images.

from auxil import registerms

registerms.register(reffilename,warpfilename,dims,outfile)

or

run auxil/registermy [OPTIONS] reffilename warpfilename

Options:

-h this help

-d <list> spatial subset list e.g. -d [0,0,500,500]

-b <int> band to use for warping (default 1)

Choose a reference image, the image to be warped and, optionally, the band
to be used for warping (default band 1) and the spatial subset of the reference
image. The reference image should be smaller than the warp image (i.e., the
warp image should overlap the reference image completely) and its upper left
corner should be near that of the warp image:

19

| warp image

|

| --------------------

| |

| | reference image

| |

The reference image (or spatial subset) should not contain zero data. The
warped image warpfilename warp will be trimmed to the spatial dimensions
of the reference image.

Example: Register two LANDSAT 7 ETM+ ENVI format images using VNIR
band 4:

run auxil/registerms -d [100 ,100 ,600 ,600] -b 4 \

imagery /LE7_20010626 imagery/ LE7_20010829

The warped file will be named LE7 20010829 warp and clipped to a 600×600
spatial subset.

registersar.py

Perform image-image registration of two polarimetric SAR images in covari-
ance matrix form.

from auxil import registersar

registersar.register(reffilename,warpfilename,dims,outfile)

or

run auxil/registersar [OPTIONS] reffilename warpfilename

Options:

-h this help

-d <list> spatial subset list e.g. -d [0,0,500,500]

Choose a reference image, the image to be warped and the spatial subset of
the reference image. The span images (trace of the covariance matrix) will be
used for registration. The reference image should be smaller than the warp
image (i.e., the warp image should overlap the reference image completely)
and its upper left corner should be near that of the warp image:

| warp image

|

| --------------------

| |

| | reference image

| |

20

The reference image (or spatial subset) should not contain zero data. The
warped image warpfilename warp will be trimmed to the spatial dimensions
of the reference image.
Example: Register two RADARSAT-2 quad pol images:

run auxil/registersar -d [100 ,100 ,600 ,600] \

myimagery /RS2_20090525 .tif myimagery /RS2_20090618 .tif

The warped file will be named RS2 20090618 warp.tif and clipped to a 600×
600 spatial subset.

rx.py

RX anomaly detection for multi- and hyperspectral images.

run/scripts rx [OPTIONS] filename

Options:

-h this help

Example: Anomaly detection for an ASTER PCA image.

run scripts /rx imagery /AST_20070501_pca .tif

sar seq.py

Perform sequential change detection on multi-temporal, polarimetric SAR
imagery with the sequential omnibus algorithm.

run scripts/sar_seq [OPTIONS] infiles* outfile enl

Options:

-h this help

-m run 3x3 median filter on p-values prior to

thresholding

-d <list> spatial subset of first image to which all files

are to be co-registered (default no co-

registration)

-s <float> significance level (default 0.0001)

If the -d option is not chosen, it is assumed that all images are co-registered
and have the same spatial/spectral dimensions. The infiles* inputs are the
full paths to the input files:

/path /to/infile_1 /path /to/infile_1 ... /path/to/infile_k

The outfile should be without path. The change maps will be written to
same directory as infile 1 with filenames

outfile_cmap : interval of most recent change , 1 band

outfile_smap : interval of first change , 1 band

outfile_fmap : number of changes , 1 band

outfile_bmap : changes in each interval , (k-1)- band

21

enl is the equivalent number of looks. If IPython engines have been enabled,
the co-registration and P -value calculations will be distributed among them.

If no spatial subsetting (and hence no co-registration) is required, the bash
shell script scripts/run sar seq.sh can be used to gather all of the SAR
images in a directory and run the algorithm:

run_sar_seq.sh pattern imdir enl significance

Example: Run the algorithm on all image file names containing the string S1A
in the directory imagery for an ENL of 12 and significance 0.0001.

!scripts /run_sar_seq .sh S1A imagery / 12 0.0001

scatterplot.py

Display a scatterplot.

run scripts/scatterplot [OPTIONS] filename1 [filename2] \

band1 band2

Options:

-h this help

-d <list> spatial subset

-n <int> samples (default 10000)

-s <string> save in eps format

Example: Show a scatterplot of bands 1 vs 2 of an ASTER image in ENVI
format.

run scripts /scatterplot imagery/ AST_20070501 1 2

som.py

A 3D Kohonen self-organizing map for multispectral image visualization in
an RGB cube.

run scripts/som [OPTIONS] filename

Options:

-h this help

-p <list> band positions e.g. -p [1,2,3,4,5,7]

-d <list> spatial subset [x,y,width,height]

e.g. -d [0,0,200,200]

-s <int> sample size (default 10000)

-c <int> cube side length (default 5)

Example: Determine the SOM for all 9 bands of an ASTER image in ENVI
format with cube size of 6× 6× 6.

run scripts /som -c 6 imagery/ AST_20070501

22

subset.py

Perform spatial and/or spectral subsetting of a multispectral image.

from auxil import subset

subset.subset(filename,dims,pos,outfile)

or

run auxil/subset [OPTIONS] filename

Options:

-h this help

-d <list> spatial subset list e.g. -d [0,0,500,500]

-p <list> band position list e.g. -p [1,2,3]

Example: Spectrally subset a LANDSAT 7 ETM+ image to eliminate thermal
band 6.

run auxil/subset -p [1,2,3,4,5,7] imagery/ LE7_20010525

JavaScript on the GEE Code Editor

The two main change detection algorithms discussed in Chapter 9 and coded
in Python, namely iMAD and sequential omnibus, are also runnable directly
from the GEE code editor using the JavaScript programs described in this
section. The code is shared on the GEE and can be cloned from the Google
Earth repository with

git clone https:// earthengine . googlesource .com/users

/mortcanty /changedetection

imad run

A simple front end for running the iMAD and automatic radiometric nor-
malization algorithms on bi-temporal optical/infrared images. Change maps,
together with the original and normalized images are exported to assets. The
iMAD convergence details and regression coefficients are exported to Google
Drive.

omnibus run

A front end for running the sequential omnibus change detection algorithm on
time series of Sentinel-1 images. Change maps are exported to assets and can
be displayed with omnibus view. A temporally de-speckled image consisting
of the mean of all the images in the sequence is appended to the change maps
to serve as background for animation; see below.

23

omnibus view

A viewer for exported sequential omnibus change maps. The layered maps
are color coded and an animated change image derived from the bmap change
map can be exported to Google Drive.

imad

JavaScript modules for running the iMAD and radiometric normalization al-
gorithms. The functions radcal and imad are exported.

omnibus

JavaScript modules for the sequential omnibus algorithm. The function omni-

bus is exported.

utilities

Various JavaScript utility modules, including a function makevideo for gen-
erating change animations.

